DARPA/NMS BAA 00-18 AGREEMENT NO. F30602- 00-2- 0556

MEASUREMENT-BASED HYBRID FLUID-FLOW MODELS FOR FAST MULTI-SCALE SIMULATION

Benjamin Melamed
Rutgers University
Rutgers Business School
Dept. of MSIS
94 Rockafeller Rd.
Piscataway, NJ 08854

Khosrow Sohraby
University of Missouri - KC
Computer Science
Telecommunications
5100 Rockhill Rd.
Kansas City, MO 64110

Yorai Wardi
Georgia Institute
of Technology
School of Electrical and
Computer Engineering
Atlanta, GA 30332

In collaboration with **Richard Fujimoto** and **George Riley**Georgia Tech

PROJECT GOALS

- PROBLEM: Emerging high-speed packet-based telecommunications networks are hard to analyze
 - analytical models of complex networks are intractable
 - simulation of complex networks is either infeasible, or takes forever to complete
- OBSERVATION: Background (Cross traffic) streams can be aggregated
 - packet simulations do not scale under aggregation
 - simulator workload is the number of packets,
 which grows additively in the aggregation level...
 - fluid simulations scale well under aggregation
 - simulator load is the number of rate changes, which is constant in the aggregation level!)

THE GENERIC FG/BG NETWORK MODEL

- The generic FG/BG (Foreground/Background) network model is a useful class of tandem or feed-forward networks
 - foreground streams are target traffic simulated accurately as packets
 - background streams are cross-traffic simulated approximately as fluid

PROJECT GOALS (Cont.)

- SOLUTION GOALS: Develop a new modeling and simulation methodologies and software
 - formulate fluid-flow analytical and simulation models
 - hybrid simulation paradigm that combines traditional discrete flows (packets) with continuous ones (fluid)
 - implement a "general-purpose" fluid flow simulator based on the hybrid simulation paradigm
 - integration with detailed packet-level simulators
 - ns2
 - GATECH's pdns (parallel distributed ns)

PROGRESS SINCE LAST REVIEW

- Design and implementation of HNS (Hybrid Network Simulator)
 - already completed coding and testing of network layer for hybrid model specification, and transport layer for pushing fluid through hybrid network
 - already completed coding and testing of statistics layer (with graphics)
 - newly completed design and implementation of UDP and ATM (both packet or fluid approximation) and TCP (packet)
 - in progress: design and implementation of fluid approximation of TCP
- Collaboration with Georgia Tech (Richard Fujimoto and George Riley)
 - already completed: integration of pdns with HNS to combine
 - accuracy of packet flows
 - efficiency of fluid flows
 - in progress: comparison of ns2 with hybrid of pdns/HNS

HNS ARCHITECTURE

- Network layer
 - stations and sources
 - messages and transactions
- Transport layer
 - fluid parcels and multiparcels to keep track of "historical" arrival rates
 - parceling management scheme of fluid
- Statistics layer
 - station and message statistics
- Protocol layer
 - associated with sources to approximate various telecom protocols (ATM, TCP, etc.)
- Management / control layer
 - extensible portion of simulator
 - implements various management / control schemes

HNS WORLDVIEW

- Hybrid transaction (message) population
 - both discrete transactions (packets) and continuous transactions (fluid)
 - transactions arrive at stations according to an arrival process, and have a fluid workload (possibly infinite), itinerary, priority and protocol
 - transactions traverse the network according to their itinerary and exit or drain at sinks
 - transactions only differ in the way their workload is served and routed
- Network of connected nodes or links
 - feed-forward topology for fluid flows
 - arbitrary topology for packet flows
 - allocated or shared buffers (possibly of 0 capacity)
 - allocated or shared servers

HNS SCREENSHOT

COLLABORATION WITH GEORGIA TECH

- Motivation: combine strengths of
 - detailed packet-level simulation capabilities of ns2
 - distributed parallelism capabilities of pdns
 - fast fluid-flow simulation capabilities of HNS
- Integration effort
 - integrate HNS via the GATECH backplane and pdns
 - integrate GATECH backplane into HNS
- Experimenting with FG/BG (Foreground / Background) traffic models (also called Target Traffic / Cross Traffic models)
 - hybrid model combining detailed packet-level model of target (FG) traffic with fast approximate fluid-flow model of cross (BG) traffic
 - good speedup was observed compared to pure packet model

EXAMPLE: WEB BROWSING MODEL

EXPERIMENT RESULTS

Speedup for different experiments:

- 50 fg and 400 bg → speedup of 3.16
- 50 fg and 200 bg → speedup of 10.27
- 50 fg and 100 bg → speedup of 40.76
- 50 fg and 50 bg → speedup of 137.6
- 50 fg and 10 bg → speedup of 242.9

EXPERIMENT RESULTS (Cont.)

EXPERIMENT CONCLUSIONS

Results are very encouraging

- fluid-flow model simulations can dramatically speed up packet-based simulations and reduce storage
- execution speedup for fluid streams is proportional to link speeds
- memory savings increase with buffer occupancies
- accuracy is robust in the aggregation level
- thus, aggregation of fluid streams is a key means for increasing simulation efficiency without reducing accuracy

Future work

- larger, more complicated hybrid models
- aggregation techniques for background fluid streams
- incorporate additional protocols (e.g., fluid TCP)
- simulator code optimization for further speedup gains